17^2+17^2=x^2

Simple and best practice solution for 17^2+17^2=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17^2+17^2=x^2 equation:



17^2+17^2=x^2
We move all terms to the left:
17^2+17^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+578=0
a = -1; b = 0; c = +578;
Δ = b2-4ac
Δ = 02-4·(-1)·578
Δ = 2312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2312}=\sqrt{1156*2}=\sqrt{1156}*\sqrt{2}=34\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34\sqrt{2}}{2*-1}=\frac{0-34\sqrt{2}}{-2} =-\frac{34\sqrt{2}}{-2} =-\frac{17\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34\sqrt{2}}{2*-1}=\frac{0+34\sqrt{2}}{-2} =\frac{34\sqrt{2}}{-2} =\frac{17\sqrt{2}}{-1} $

See similar equations:

| y+3/3=3 | | -6z-4=-40 | | 2(4x+2)=6x+10 | | 6x+128=86 | | 8p^2-48=-40p | | 6/b-3=11 | | 3z/10+8=4 | | 2x-3=15* | | 2(4x+2)=6x=10 | | 8q+5q-11q+q+1=13 | | x+20+x+60+2x+40=180 | | 2*b−8=–4 | | 19-6x=37 | | -2(b−8)=-4 | | X^2+8x+19=6 | | N+89n=180 | | 39-9y+4y=14 | | –43=–5(a+11)+2a | | g^2+36=85 | | x^2(-10x)^2=101 | | 2+j=2 | | (x-1)(x-7)=156 | | 6s+9=69 | | 5y+17=2y-25* | | 26h+h-18h-6h+7h=30 | | 5x+8-2x=3(2x-4) | | y/5=-57 | | -4u-1=-13 | | M={n/nϵZ,-2≤n≤6} | | 6.7n-4=31 | | 6-5n=1 | | 7-2i=-3 |

Equations solver categories